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On LARS/Homotopy Equivalence Conditions
for Over-Determined LASSO

Junbo Duan, Charles Soussen, David Brie, Jérôme Idier, and Yu-Ping Wang

Abstract—We revisit the positive cone condition given by Efron
et al. [1] for the over-determined least absolute shrinkage and selec-
tion operator (LASSO). It is a sufficient condition ensuring that the
number of nonzero entries in the solution vector keeps increasing
when the penalty parameter decreases, based on which the least
angle regression (LARS) [1] and homotopy [2] algorithms yield the
same iterates. We show that the positive cone condition is equiva-
lent to the diagonal dominance of the Grammatrix inverse, leading
to a simpler way to check the positive cone condition in practice.
Moreover, we elaborate on a connection between the positive cone
condition and the mutual coherence condition given by Donoho
and Tsaig [3], ensuring the exact recovery of any -sparse repre-
sentation using both LARS and homotopy.

Index Terms—LASSO, homotopy, LARS, -norm, diagonally
dominant, -step solution property, and positive cone condition.

I. INTRODUCTION

F OR a given signal , we want to estimate the
approximation , or representation ,

in a given matrix . This signal approximation
or restoration problem often suffers from instabilities when
is ill-conditioned. To alleviate the instability in the signal

restoration problem [4], some constraints must be imposed.
In the signal processing community, the following penalized
optimization problem has received widespread attention.

(1)

where the penalty parameter controls the tradeoff between
the approximation error and the model complexity; and

stand for the - and -norm respectively. The constrained
form of (1) is well known in the literature as the least absolute
shrinkage and selection operator (LASSO) [5].
The solution path of optimization problem (1) is defined

as the set of all the optimizers w.r.t. the penalty parameter :
. As a consequence of the piecewise linear
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property of the solution path [2], efficient algorithms such as
the homotopy [2], [6] and the least angle regression (LARS) [1]
were developed. The homotopy algorithm starts with
(or [6], where is the uniform norm)
and decreases gradually. During each iteration, a new critical
value of (i.e., ) and the corresponding are calcu-
lated from the previous values. We note that at each iteration
of the homotopy algorithm, the active set
is maintained and the nonzero entries of are updated. When
the iteration is completed, either some changes from zero to
nonzero ( is appended to ) or is removed on the contrary (
is removed from ). In that respect, the homotopy algorithm
is a forward-backward algorithm. On the contrary, the LARS1

is just a forward algorithm since only insertions into the active
set are allowed.
For over-determined systems , the positive cone

condition (PCC) introduced by Efron et al. implies the mono-
tonic increase of the active set cardinality when decreases ([1],
Theorem 4). Meinshausen [7] showed a stronger result: if the
PCC is fulfilled, not only the cardinality (number of el-
ements in the active set ) increases monotonically, but also the
amplitudes increase monotonically when decreases.
The recent work of Tibshirani et al. [8], [9] shows that if the
inverse of the Gram matrix of , i.e., , is diagonally
dominant, the so-called ‘slope bound’ holds, which is similar
to the monotonic increasing property. The relation between the
PCC and diagonally dominant condition (DDC) was already no-
ticed by Meinshausen and Yu [10]; however, a clear character-
ization of their relations is still lacking. In this paper, we show
that the PCC is equivalent to the strictly diagonally dominant
condition (SDDC).
For under-determined systems , Donoho and Tsaig

[3] derived the mutual coherence condition (MCC) on and
. Under this condition the LARS and homotopy have

the so-called -step solution property, i.e., any -sparse repre-
sentation with can be exactly recovered
in steps, that is, by performing insertions. The -step solu-
tion property implies the monotonic increase of the cardinality

when decreases. Donoho and Tsaig’s results [3] were
essentially dedicated to under-determined systems.We note that
the notion of the -step solution property and MCC, can be nat-
urally extended to the over-determined systems, and therefore
can be connected with the DDC and PCC.
This paper is organized as follows: In Section II, we show that

the PCC and SDDC are equivalent. In Section III, we establish a
connection with theMCC.We conclude the paper in Section IV.

1Here we refer to the original version of LARS. The modified version of
LARS [1] enabling the removal of indices from the active set , is equivalent
to homotopy.
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II. THE POSITIVE CONE AND DIAGONALLY
DOMINANT CONDITIONS

The Positive Cone Condition (PCC) [1]: We say that obeys
the PCC if, for any diagonal matrix whose diagonal elements
are , the sum of each row of the inverse matrix of any prin-
cipal minor of is positive.
Theorem 1 ([7], Lemma 12): Let be a full rank matrix of

size , with . Under the PCC2, for any , the
absolute value of each entry in monotonically increases
when decreases.
Definition 1: A matrix is called:
• (row) diagonally dominant (DD)3 if

;
• strictly diagonally dominant (SDD) if

.
Tibshirani et al. [8] showed that if is DD, the

so-called ‘slope bound’ holds, which is similar to the mono-
tonic increasing property. Their result can be stated as the
diagonally dominant condition (DDC) in Theorem 2. Their
proof was derived from the work of Tibshirani and Taylor [9],
in which an alternative cost function was used. In the Appendix
of this paper, we present an alternative but simpler proof by
considering the formulation (1) directly.
Theorem 2 ([8], Theorem 1): For full rank matrix

, in optimization problem (1), if
is DD, then for any is monotonically
increasing4 when decreases.
In Theorem 3, we show that the PCC is equivalent to the

strictly diagonally dominant condition (SDDC) on .
Definition 2 (Notations): is the null matrix;

is the identity matrix;
is a dimension reduction (from to ) matrix; is a

square permutation matrix whose size depends on the context;
and is the transpose of .
Theorem 3: The PCC is equivalent to the SDDC on

.
Proof:

• PCC SDDC on
Each principal minor of can be written as

, the PCC demands
that for any and for all , the sum
of each row of is positive. For the configuration
where is the identity matrix and , the sum of
the -th row of can be written
as ; the PCC
reads . Because and can
be either or , proper choice of and yields

, i.e., is SDD.
• SDDC on PCC

being SDD yields
for any configuration of . So the PCC is

true for . From Lemma 3 in the Appendix, which can

2Although Meinshausen used term ‘restricted PCC’ in ([7], Lemma 12), we
note that it is equivalent to the PCC for the over-determined systems.
3The typical definition of a diagonally dominant matrix relies on the absolute

value of ; however, in this paper, is always a positive definite matrix, thus
the positiveness of is implied.
4Here the ‘monotonically increasing’ has to be understood as ‘monotonically

non-decreasing’.

be extended to SDD straightforward, the inverse matrix of
each principal minor of is also SDD. So the PCC is
true for .

III. THE CONNECTIONS WITH MUTUAL
COHERENCE CONDITION

In this section, we elaborate the connection with the mu-
tual coherence condition. First we introduce the -step solution
property.
The -Step Solution Property [3]: Let

be an under-determined system and be a vector
admitting a -sparse representation, i.e., has nonzero entries.
We say that an algorithm satisfies the -step solution property
for the given problem if it can get the correct solution
with at most -steps.
Here, we use the notation instead of to stress that the

results in [3] are dedicated to the noise-free setting. Donoho
and Tsaig [3] presented the following sufficient condition under
which the LARS and homotopy algorithms satisfy the -step
solution property.
The Mutual Coherence Condition (MCC) [3]: Let be an

under-determined system.We say that a problem instance
satisfies the mutual coherence condition if the sparsity level
obeys

(2)

where is the mutual coherence of

Theorem 4 ([3], Theorem 1 and Corollary 2): Let be a
matrix of size with . If a problem instance
satisfies the MCC, then the LARS and homotopy algorithms run
in steps and stop, delivering the solution .
Throughout this section, is normalized for convenience,

i.e., .
Although the -step solution property and MCC were origi-

nally introduced in the context of the under-determined systems,
they can be obviously extended to the over-determined systems
(see the proof of ([3], Theorem 1 and Corollary 2)).
Corollary 1: Let be a matrix of size with .

If a problem instance satisfies the MCC, then the LARS
and homotopy algorithms run in steps and stop, delivering the
solution .
Therefore, in the remainder of this paper, theMCC and -step

solution property are also considered in the context of the over-
determined systems.
In the case of homotopy algorithm, we remark that the -step

solution property states that homotopy finds the support of in
iterations, thus homotopy never removes entries from the ac-

tive set. In other words, the number of nonzero entries of the so-
lution vector monotonically increases at each iteration. Herein,
the MCC, the PCC and the SDDC/DDC are connected via the
-step solution property, as illustrated by Fig. 1.
The MCC reflects that low correlated matrices (small ’s)

enable the recovery of vectors whose number of nonzero
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Fig. 1. The connections between mutual coherence condition (MCC) (for the
over-determined systems), positive cone condition (PCC) and the (strictly) di-
agonally dominant condition (SDDC/DDC).

entries is large. In the extreme case where , MCC (2)
rereads

(3)

which links the MCC and the DDC conditions by the following
theorem and corollary.
Theorem 5: For full rank symmetric matrix
, if and , then is invertible

and is SDD.
Proof: If

for
is is positive definite and nonsingular [11] its

inverse is also positive definite . From
we have:

here is Kronecker symbol, and

By moving from the right to the left hand side, we
have , so is SDD.
Corollary 2: Any symmetric matrix with
, is invertible and is SDD.
Corollary 2 coincides with the upper bound on in (3). As
is equal to the maximum absolute value of the off-diagonal

entries of the Gram matrix implies
that is DD. Therefore, the MCC and SDDC/DDC are
connected via Corollary 2, as demonstrated in Fig. 1.
Three points need further discussion: first, the -step solution

property describes the performances of the given algorithms,
while the monotonic increase of with the

decrease of describes the property of the solution path of
Problem (1). As homotopy was proved to be able to find the
solution path of Problem (1) [6], the -step solution property
is an indirect characterization of the monotonic increase of the
entries of the solution vector. Therefore the MCC yields the
-step solution property directly, implying monotonic increase
indirectly. On the contrary, the PCC and the SDDC/DDC yield
monotonic increase directly. Second, as mentioned before, the
MCC can be applied to both under-determined and over-deter-
mined systems, while the PCC and the SDDC/DDC are only
applicable to over-determined systems. Third, the MCC was
derived in the noise-free case, while PCC and the SDDC/DDC
can be applied to the noisy case. However, MCC is more relax-
able w.r.t. the sparsity of the signal when the sparsity is known
a priori, as shown in (2), while the PCC and the SDDC/DDC
are restrictive and independent of the sparsity of the signal.
In fact, the noisy case can be considered as noise-free in the
extreme case when is not sparse at all, which was discussed
in this section.

IV. CONCLUSION

In this paper, we study the conditions concerning the solu-
tion path of the over-determined LASSO problem. We showed
that two conditions, namely, the PCC and the SDDC, are equiv-
alent. Under either of them, the number of nonzero entries in
the optimizer of over-determined LASSO increases monoton-
ically when the penalty parameter decreases. In practice, this
means the ‘forward’ algorithm LARS yields the same solution
path as the ‘forward-backward’ algorithm homotopy. Based on
this fact, the computation in homotopy algorithm can thus be re-
duced. Through the equivalence, we also have a practical way of
verifying the PCC, avoiding going through all possible config-
urations as suggested by the PCC definition. Furthermore, we
showed that the SDDC/DDC and the PCC are related to the
MCC, which yields the -step property for the over-determined
systems.

APPENDIX

First, we introduce Lemmas 1 and 2 to prove Lemma 3. Fi-
nally, based on Lemma 3, we give the proof of Theorem 2.
Lemma 1: If full rank symmetric matrix is DD,

then is also DD.
Proof: Define

where are of size . From block matrix
inversion lemma [?], we know

so the entry of reads .
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so is DD. ‘DD’ above indicates that the DD condition
is applied.

Lemma 2: If full rank symmetric matrix is
DD, then is also DD for all

.
Proof: is full rank symmetric, so

is also full rank symmetric. By using Lemma 1 recursively:
is DD is DD is DD is DD.
Lemma 3 (DD Preservation Property): If a full rank sym-

metric matrix is DD, then
is also DD for any and for all

.
From Lemma 2, Lemma 3 is straightforward. The same result

can also be found in [12].
Based on Lemma 3, the proof of Theorem 2 is as follows.
Proof of Theorem 2: The subdifferential of is:

Here is the subdifferential of , which is defined as:

A necessary condition for to be a minimizer of the optimiza-
tion problem (1) is to have . Therefore, we have
the following system:

(4)

Because is piecewise linear [2], for each piece ,
the entries of corresponding to the nonzero entries in

are constant. Thus we can find a permutation such that
the nonzero entries and zero entries in are rearranged to be
the first and last entries respectively. In
the following, we omit the dependency with respect to for the
sake of brevity.

(5)

By substituting (5) into (4), and left multiplying , since
, we have

which can be rewritten as

(6)

where and is the length of .
Under the condition that is DD, from Lemma 3,

is DD. From (6) we have

For the -th entry of , i.e.,

For positive , since and ,

For the negative case, the derivative is non-negative. We can
see that non-increases monotonically as increases,
while is equal to zero in piece .
Because is continuous for [2], it is straight-

forward to extend the result to all : when increases, the
absolute values of the nonzero entries in decrease and
tend towards zero, while the zero entries remain zeros. There-
fore, non-increases monotonically when in-
creases. In other words, increases monotoni-
cally when decreases.

REFERENCES
[1] B. Efron, T. Hastie, I. Johnstone, and R. Tibshirani, “Least angle re-

gression,” Ann. Statist., vol. 32, no. 2, pp. 407–499, 2004.
[2] M. R. Osborne, B. Presnell, and B. A. Turlach, “A new approach to

variable selection in least squares problems,” IMA J. Numer. Anal.,
vol. 20, no. 3, pp. 389–403, 2000.

[3] D. L. Donoho and Y. Tsaig, “Fast solution of -norm minimization
problems when the solution may be sparse,” IEEE Trans. Inf. Theory,
vol. 54, no. 11, pp. 4789–4812, Nov. 2008.

[4] C. Soussen, J. Idier, D. Brie, and J. Duan, “From Bernoulli-Gaussian
deconvolution to sparse signal restoration,” IEEE Trans. Signal
Process., vol. 59, no. 10, pp. 4572–4584, 2011.

[5] R. Tibshirani, “Regression shrinkage and selection via the Lasso,” J.
R. Statist. Soc. B, vol. 58, no. 1, pp. 267–288, 1996.

[6] D. M. Malioutov, M. Cetin, and A. S. Willsky, “Homotopy continua-
tion for sparse signal representation,” in Proc. IEEE ICASSP, Philade-
phia, PA, Mar. 2005, vol. V, pp. 733–736.

[7] N. Meinshausen, “Relaxed Lasso,” Comput. Statist. Data Anal., vol.
52, no. 1, pp. 374–393, Sep. 2007.

[8] R. Tibshirani, J. Bien, J. Friedman, T. Hastie, N. Simon, J. Taylor, and
R. J. Tibshirani, “Strong rules for discarding predictors in lasso-type
problems,” J. R. Statist. Soc. B, vol. 74, pp. 245–266, 2012.

[9] R. Tibshirani and J. Taylor, “The solution path of the generalized
lasso,” Ann. Statist., vol. 39, no. 3, pp. 1335–1371, 2011.

[10] N. Meinshausen, G. Rocha, and B. Yu, “Discussion: A tale of three
cousins: Lasso, L2Boosting and Dantzig,” Ann. Statist., vol. 35, no. 6,
pp. 2373–2384, 2007.

[11] D. Bernstein, Matrix Mathematics. Princeton, NJ: Princeton Univ.
Press, 2009.

[12] D. Carlson and T. Markham, “Schur complements of diagonally dom-
inant matrices,” Czech. Math. J., vol. 29, no. 2, pp. 246–251, 1979.


