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On LARS/Homotopy Equivalence Conditions
for Over-Determined LASSO

Junbo Duan, Charles Soussen, David Brie, Jérome Idier, and Yu-Ping Wang

Abstract—We revisit the positive cone condition given by Efron
etal. [1] for the over-determined least absolute shrinkage and selec-
tion operator (LASSO). It is a sufficient condition ensuring that the
number of nonzero entries in the solution vector keeps increasing
when the penalty parameter decreases, based on which the least
angle regression (LARS) [1] and homotopy [2] algorithms yield the
same iterates. We show that the positive cone condition is equiva-
lent to the diagonal dominance of the Gram matrix inverse, leading
to a simpler way to check the positive cone condition in practice.
Moreover, we elaborate on a connection between the positive cone
condition and the mutual coherence condition given by Donoho
and Tsaig [3], ensuring the exact recovery of any k-sparse repre-
sentation using both LARS and homotopy.

Index Terms—LASSO, homotopy, LARS, ¢;-norm, diagonally
dominant, k-step solution property, and positive cone condition.

I. INTRODUCTION

OR a given signal y € R™, we want to estimate the

approximation ¥y = Au, or representation ¥y = Au,
in a given matrix A € R™*™. This signal approximation
or restoration problem often suffers from instabilities when
A is ill-conditioned. To alleviate the instability in the signal
restoration problem [4], some constraints must be imposed.
In the signal processing community, the following penalized
optimization problem has received widespread attention.

. 1
u*(A) = arg min {E('u,,)\) = §||y — Aul|* + )\|'u,||1} . (D)

u

where the penalty parameter A controls the tradeoff between
the approximation error and the model complexity; || - || and
|I-]|1 stand for the £2- and £; -norm respectively. The constrained
form of (1) is well known in the literature as the least absolute
shrinkage and selection operator (LASSO) [5].

The solution path of optimization problem (1) is defined
as the set of all the optimizers w.r.t. the penalty parameter A:
{u*(A) | A € (0, 0)}. As a consequence of the piecewise linear
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property of the solution path [2], efficient algorithms such as
the homotopy [2], [6] and the least angle regression (LARS) [1]
were developed. The homotopy algorithm starts with Ay = 400
(or A\; = ||ATyl|s [6], where || - |l is the uniform norm)
and decreases A gradually. During each iteration, a new critical
value of A (i.e., A,) and the corresponding u*(\,) are calcu-
lated from the previous values. We note that at each iteration
of the homotopy algorithm, the active set Z(u) = {i|u; # 0}
is maintained and the nonzero entries of u are updated. When
the iteration is completed, either some u; changes from zero to
nonzero (¢ is appended to Z) or is removed on the contrary (¢
is removed from 7). In that respect, the homotopy algorithm
is a forward-backward algorithm. On the contrary, the LARS!
is just a forward algorithm since only insertions into the active
set are allowed.

For over-determined systems (m > n), the positive cone
condition (PCC) introduced by Efron et al. implies the mono-
tonic increase of the active set cardinality when A decreases ([1],
Theorem 4). Meinshausen [7] showed a stronger result: if the
PCC is fulfilled, not only the cardinality Card[Z] (number of el-
ements in the active set 7) increases monotonically, but also the
amplitudes |u;( )| increase monotonically when A decreases.
The recent work of Tibshirani et al. [8], [9] shows that if the
inverse of the Gram matrix of A4, i.e., (AT A)~!, is diagonally
dominant, the so-called ‘slope bound’ holds, which is similar
to the monotonic increasing property. The relation between the
PCC and diagonally dominant condition (DDC) was already no-
ticed by Meinshausen and Yu [10]; however, a clear character-
ization of their relations is still lacking. In this paper, we show
that the PCC is equivalent to the strictly diagonally dominant
condition (SDDC).

For under-determined systems (. < n), Donoho and Tsaig
[3] derived the mutual coherence condition (MCC) on A and
k = ||u||o. Under this condition the LARS and homotopy have
the so-called k-step solution property, i.e., any k-sparse repre-
sentation ¥y = Awu with ||ullp = k can be exactly recovered
in k steps, that is, by performing £ insertions. The £-step solu-
tion property implies the monotonic increase of the cardinality
Card[Z] when A decreases. Donoho and Tsaig’s results [3] were
essentially dedicated to under-determined systems. We note that
the notion of the %&-step solution property and MCC, can be nat-
urally extended to the over-determined systems, and therefore
can be connected with the DDC and PCC.

This paper is organized as follows: In Section II, we show that
the PCC and SDDC are equivalent. In Section III, we establish a
connection with the MCC. We conclude the paper in Section V.

IHere we refer to the original version of LARS. The modified version of
LARS [1] enabling the removal of indices from the active set 7, is equivalent
to homotopy.
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II. THE POSITIVE CONE AND DIAGONALLY
DOMINANT CONDITIONS

The Positive Cone Condition (PCC) [1]: We say that A obeys
the PCC if, for any diagonal matrix B whose diagonal elements
are +1, the sum of each row of the inverse matrix of any prin-
cipal minor of BT AT AB is positive.

Theorem 1 ([7], Lemma 12): Let A be a full rank matrix of
size m X n, with m 2 n. Under the PCC2, for any y € R™, the
absolute value of each entry in «*{)) monotonically increases
when A decreases.

Definition 1: A matrix H € R"*" is called:

* (row) diagonally dominant (DD)3 if hi; = 3, ; [hij|(i =

1,...,n);
 strictly diagonally dominant
Dz lhili =1,...,m).

Tibshirani et al. [8] showed that if (AT A)"! is DD, the
so-called ‘slope bound’ holds, which is similar to the mono-
tonic increasing property. Their result can be stated as the
diagonally dominant condition (DDC) in Theorem 2. Their
proof was derived from the work of Tibshirani and Taylor [9],
in which an alternative cost function was used. In the Appendix
of this paper, we present an alternative but simpler proof by
considering the formulation (1) directly.

Theorem 2 ([8], Theorem 1): For full rank matrix
A € R™*"(m > n), in optimization problem (1), if (AT A) !
is DD, then for any y € R™. Card[Z(u*({)))] is monotonically
increasing* when A decreases.

In Theorem 3, we show that the PCC is equivalent to the
strictly diagonally dominant condition (SDDC) on (A* A)~1.

Definition 2 (Notations): Opxn € R¥*" is the null matrix;
I, € R™™™ is the identity matrix; Jxxn = [Ti, Opx(n—w)] €
RE*™ is a dimension reduction (from n to k) matrix; P is a
square permutation matrix whose size depends on the context;
and P? is the transpose of P.

Theorem 3: The PCC is equivalent to the SDDC on H =
(ATA)L

Proof:

« PCC = SDDC on (A" A) !

Each principal minor of BT AT AB can be written as
M = J...PB"A"ABP"J{,,, the PCC demands
that for any P, B and for all ¥ = 1,...,n, the sum
of each row of M ! is positive. For the configuration
where P is the identity matrix and & = n, the sum of
the i-th row of (BY AT AB)~' = BT HB can be written
as Z::l bi.t'bjjhij = hy + Zj;ﬁi biibjjh.[‘j; the PCC
reads h;; + Z#i bi;b;;hi; > 0. Because b;; and b;; can
be either +1 or —1, proper choice of b;; and b;; yields
hii > 3, [hijl.ie, H = (AT A)~" is SDD.

+ SDDC on (ATA)~! = PCC

H = (A" A)~' being SDD yields h;; > >z [higl =
> ;i bisbjjhij for any configuration of B. So the PCC is
true for £ = n. From Lemma 3 in the Appendix, which can

(SDD) if hy >

2Although Meinshausen used term ‘restricted PCC’ in ([7], Lemma 12), we
note that it is equivalent to the PCC for the over-determined systems.

3The typical definition of a diagonally dominant matrix relies on the absolute
value of h; ; however, in this paper, H is always a positive definite matrix, thus
the positiveness of h,; is implied.

4Here the ‘monotonically increasing’ has to be understood as ‘monotonically
non-decreasing’.
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be extended to SDD straightforward, the inverse matrix of
each principal minor of A* A is also SDD. So the PCC is
true for & < n.

|

III. THE CONNECTIONS WITH MUTUAL
COHERENCE CONDITION

In this section, we elaborate the connection with the mu-
tual coherence condition. First we introduce the k-step solution
property.

The k-Step Solution Property [3]: Let A = [a1,...,a,] €
R™*™ be an under-determined system and 4 = A# be a vector
admitting a k-sparse representation, i.e., % has k nonzero entries.
We say that an algorithm satisfies the k-step solution property
for the given problem (A, %) if it can get the correct solution
with at most k-steps.

Here, we use the notation 4 instead of y to stress that the
results in [3] are dedicated to the noise-free setting. Donoho
and Tsaig [3] presented the following sufficient condition under
which the LARS and homotopy algorithms satisfy the k-step
solution property.

The Mutual Coherence Condition (MCC) [3]: Let A be an
under-determined system. We say that a problem instance (A4, g)
satisfies the mutual coherence condition if the sparsity level &
obeys

14 pt

k<
2

2
where g is the mutual coherence of A:

I
i#i | aillllasll

Theorem 4 ([3], Theorem 1 and Corollary 2): Let A be a
matrix of size m x n with m < n.If a problem instance (A, )
satisfies the MCC, then the LARS and homotopy algorithms run
in % steps and stop, delivering the solution .

Throughout this section, a; is normalized for convenience,
ie., la;| = 1.

Although the %-step solution property and MCC were origi-
nally introduced in the context of the under-determined systems,
they can be obviously extended to the over-determined systems
(see the proof of ([3], Theorem 1 and Corollary 2)).

Corollary 1: Let A be a matrix of size m X n with m = n.
If a problem instance (A, §) satisfies the MCC, then the LARS
and homotopy algorithms run in & steps and stop, delivering the
solution .

Therefore, in the remainder of this paper, the MCC and k-step
solution property are also considered in the context of the over-
determined systems.

In the case of homotopy algorithm, we remark that the k-step
solution property states that homotopy finds the support of 7 in
k iterations, thus homotopy never removes entries from the ac-
tive set. In other words, the number of nonzero entries of the so-
lution vector monotonically increases at each iteration. Herein,
the MCC, the PCC and the SDDC/DDC are connected via the
k-step solution property, as illustrated by Fig. 1.

The MCC reflects that low correlated matrices A (small z¢’s)
enable the recovery of vectors 4 whose number of nonzero
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SDDC/DDC

u< ﬁ (Mcc) [CorollaryT

Fig. 1. The connections between mutual coherence condition (MCC) (for the
over-determined systems), positive cone condition (PCC) and the (strictly) di-
agonally dominant condition (SDDC/DDC).

k-step solution property

entries is large. In the extreme case where £ = n — 1, MCC (2)
rereads

1
o2n — 3’

p< )
which links the MCC and the DDC conditions by the following
theorem and corollary.

Theorem 5: For full rank symmetric matrix G € R"*"(n >
2),if gi; > 0 and |gs5]/g:s < 1/(2n — 3), then G is invertible
and G~ is SDD.

Proof 1f lgyl/ge < 1@n-3G £ i)
Do iwilGil/gi £ (n=1)/(2n-3) < 1l forn > 2=
G 15 SDD = @ is positive definite and nonsingular [11] = its
inverse H = G~ ! is also positive definite = h;; > 0. From
HG = I we have:

bij = Z Rivgo; = Z Rivgo; + hij 955,
v v#j
here 6;; is Kronecker symbol, and

> I

i
= Z (Sij - Z,,75j hivgu;,‘
NE 9ji
- Z - Z Foi h’iv
e vty 955
1
< h’i'lv
2n — 3 Z Z | |
J#i v#j
1
T Z Z |hiw| — Z i
NEOI s
1
:27L—3 (’L72)2|h‘3‘+(”*1)|h“|
JFi
By moving >, |h;;| from the right to the left hand side, we
have 2, ,; [hij| < |hii| = hiz, 50 G ™' = H is SDD. ¢

Corollary 2: Any symmetric matrix G € R"*" with ¢;; =
1,)g:] < 1/(2n — 3)(i # §) is invertible and G~ is SDD.

Corollary 2 coincides with the upper bound on p in (3). As
4 1s equal to the maximum absolute value of the off-diagonal
entries of the Gram matrix G = AT A, yn < 1/(2n — 3) implies
that (A" A) ~! is DD. Therefore, the MCC and SDDC/DDC are
connected via Corollary 2, as demonstrated in Fig. 1.

Three points need further discussion: first, the k-step solution
property describes the performances of the given algorithms,
while the monotonic increase of Card[Z(u*()\))] with the
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decrease of A describes the property of the solution path of
Problem (1). As homotopy was proved to be able to find the
solution path of Problem (1) [6], the k-step solution property
is an indirect characterization of the monotonic increase of the
entries of the solution vector. Therefore the MCC yields the
k-step solution property directly, implying monotonic increase
indirectly. On the contrary, the PCC and the SDDC/DDC yield
monotonic increase directly. Second, as mentioned before, the
MCC can be applied to both under-determined and over-deter-
mined systems, while the PCC and the SDDC/DDC are only
applicable to over-determined systems. Third, the MCC was
derived in the noise-free case, while PCC and the SDDC/DDC
can be applied to the noisy case. However, MCC is more relax-
able w.r.t. the sparsity of the signal when the sparsity is known
a priori, as shown in (2), while the PCC and the SDDC/DDC
are restrictive and independent of the sparsity of the signal.
In fact, the noisy case can be considered as noise-free in the
extreme case when # is not sparse at all, which was discussed
in this section.

IV. CONCLUSION

In this paper, we study the conditions concerning the solu-
tion path of the over-determined LASSO problem. We showed
that two conditions, namely, the PCC and the SDDC, are equiv-
alent. Under either of them, the number of nonzero entries in
the optimizer of over-determined LASSO increases monoton-
ically when the penalty parameter decreases. In practice, this
means the ‘forward’ algorithm LARS yields the same solution
path as the ‘forward-backward’ algorithm homotopy. Based on
this fact, the computation in homotopy algorithm can thus be re-
duced. Through the equivalence, we also have a practical way of
verifying the PCC, avoiding going through all possible config-
urations as suggested by the PCC definition. Furthermore, we
showed that the SDDC/DDC and the PCC are related to the
MCC, which yields the %k-step property for the over-determined
systems.

APPENDIX

First, we introduce Lemmas 1 and 2 to prove Lemma 3. Fi-
nally, based on Lemma 3, we give the proof of Theorem 2.
Lemma 1: If full rank symmetric matrix H € R™*" is DD,
then R = (J(,,,,_l)XnHAJ%;Lfl)Xn)’l is also DD.
Proof: Define

H11 H12 —1 Gll G12
H= ,G=H " = ,
[Hsz H2J {Gsz GZJ ’

where H1, G1; are of size (n—1) x (n—1). From block matrix
inversion lemma [?], we know

R=Gy =Hy - HH,, Hy,,

so the entry of R reads r;; = hij — (Rinkjn)/(Pun ).
hinh;
E |rij| = E hij — ;n -
itim i#in fun
|Fin|
< Y lhil+ o > |l
. . nn . .
Jj#im j#i,n
DD b
< § : |h’l7| + |]’I m| (hnn - |hzn|)
i#im "
h? DD h2
= E hij| = = < hy — 7 =1y,
| 7 | th’fL - hl’L”L T/ )

j#i
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so R£is DD. ‘DD’ above < indicates that the DD condition h;; >

> ;i |hij| 2 0is applied. |
Lemma 2: If full rank symmetric matrix H € R™*" is
DD, then R, = (JypxnH 'Ji,,)"" is also DD for all

k=1,..., n — 1.
Proof: H is full rank symmetric, so R;(i = 1,...,n— 1)
is also full rank symmetric. By using Lemma 1 recursively: H
isDD=R, _1isDD= R, ,isDD= ------ = R;isDD.m
Lemma 3 (DD Preservation Property): If a full rank sym-
metric matrix H € R™*™ is DD, then
(JixnPH 'PTJL..,) 1isalso DD for any P and for all k =
1,...,n.
From Lemma 2, Lemma 3 is straightforward. The same result
can also be found in [12].
Based on Lemma 3, the proof of Theorem 2 is as follows.
Proof of Theorem 2: The subdifferential of E(u, A) is:

IE(u, \) = AT (Au(\) — y) + A(A).

Here s is the subdifferential of ||u||;, which is defined as:

s; =1, if u; > 0;
s=0|ull1 =< si =—1, if u; < 05
s; € [-1,1], otherwisc.

A necessary condition for #* to be a minimizer of the optimiza-
tion problem (1) is to have 0 € 9FE(u*, A). Therefore, we have
the following system:

AT Au* () + As*(\) = ATy 4)

Because u* (\) is piecewise linear [2], for each piece [A,, Ap—1),
the entries of s*(A) corresponding to the nonzero entries in
u*(\) are constant. Thus we can find a permutation P such that
the nonzero entries and zero entries in «* are rearranged to be
the first u),(# 0) and last entries ' (= 0) respectively. In
the following, we omit the dependency with respect to A for the
sake of brevity.

u* =Pt [u:“]

Ugg
5" =PT [j:ﬂ,ATy:PT [f;] 6

By substituting (5) into (4), and left multiplying P, since P* =
P!, we have

PATAPT |:’u'on:| +)\|:s;)n:| — |:-’I;un:|7
0 s Toft
which can be rewritten as

v T un, sio | Ton
Bk AR A R G
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where ¥ = Jp.,., PATAPTJ], . and k is the length of u?

on*

Under the condition that (AT A)~! is DD, from Lemma 3, R £
¥ ! is DD. From (6) we have

*
dugy _ _Rs*
d)\ on
) . o e )
For the i-th entry of u},, i.e., uj, ;(i = 1,.... k)
* k
dug,; e .
d\ - E ’l]é’on.j - 7’11*50[1,2' - § ’Ijéon,j
5=1 i#i
For positive u, ;, since 53, ; = 1 and 5%, . € {~1,1},
*
dug,; ‘ .
U E :7”7j‘son.j
J#e
DD .
< =) (|rijl +7ijsin ;) <0
i

For the negative case, the derivative is non-negative. We can
see that [}, ;(A)| non-increases monotonically as A increases,
while |ufg ;(A)| is equal to zero in piece [A,, Ap_1).

Because «}()) is continuous for A > 0 [2], it is straight-
forward to extend the result to all A: when A increases, the
absolute values of the nonzero entries in u*(A) decrease and
tend towards zero, while the zero entries remain zeros. There-
fore, Card[Z(u*(\))] non-increases monotonically when A in-
creases. In other words, Card[Z(u*()))] increases monotoni-

cally when X decreases. [ |
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